

Journal of Alloys and Compounds 275-277 (1998) 250-253

Applicability of the shell model for energy transfer

Thomas Luxbacher^{a,*}, Harald P. Fritzer^a, Colin D. Flint^b

^aInstitut für Physikalische und Theoretische Chemie, Technische Universität Graz, Rechbauerstraße 12, 8010 Graz, Austria ^bLaser Laboratory, Department of Chemistry, Birkbeck College, University of London, 29, Gordon Square, London WC1H 0PP, UK

Abstract

In the cubic hexachloroelpasolite crystals $Cs_2NaSm_xEu_yGd_{1-x-y}Cl_6$ the emission from the ${}^4G_{5/2}$ state of Sm^{3+} is strongly quenched by cross-relaxation and energy-transfer processes. At temperatures above 100 K the energy-transfer rate consists of non-resonant contributions due to electric dipole vibronic–electric dipole vibronic interaction and a near-resonant contribution where both the donor and acceptor transitions are magnetic-dipole allowed. The near-resonant energy-transfer rate is calculated and the small discrepancy between the theoretical and experimental values shows the applicability of the shell model for highly symmetric crystals. © 1998 Elsevier Science S.A.

Keywords: Energy-transfer rate; Hexachloroelpasolite crystals; Shell model

1. Introduction

In a previous paper we applied a shell model for the simultaneous treatment of cross-relaxation and energytransfer processes to understand the decay kinetics of the ${}^{4}G_{5/2}$ state of Sm³⁺ in the cubic hexachloroelpasolite crystals $Cs_2NaSm_xEu_yGd_{1-x-y}Cl_6$ [1]. In this system the emission from the ${}^{4}G_{5/2}$ state of Sm³⁺ is strongly quenched by both cross-relaxation to nearby Sm³⁺ ions and energy transfer to the ${}^{5}D_{0}$ state of Eu³⁺ acceptors. The temperature dependence of the intrinsic decay rate k_0 of an isolated Sm^{3+} ion and the cross-relaxation rate k^{CR} to a single nearest-neighbour Sm³⁺ acceptor can be described by the coth law for vibronic transitions whereas the energy-transfer rate k^{ET} from the Sm³⁺ donor ion to a single Eu³⁺ acceptor in the first shell shows a rapid increase at temperatures above 100 K [2]. The stronger temperature dependence of this rate indicates that two different energy-transfer processes are present. At low temperatures the increase of k^{ET} is consistent with a squared coth law for electric dipole vibronic-electric dipole vibronic interaction whereas near-resonant transfer involving the Sm³⁺ (${}^{4}G_{5/2}$) $\Gamma_{7} \rightarrow ({}^{6}H_{7/2})\Gamma_{8}$ donor transition and the Eu³⁺ (⁷F₁) $\Gamma_4 \rightarrow$ (⁵D₀) Γ_1 acceptor transition shown in Fig. 1 as a pair of transitions BB' becomes dominant as the temperature is raised where both transitions are of magnetic-dipole allowed electronic origin. The total energy-transfer rate to a single Eu³⁺ acceptor in the first shell shows an almost linear increase in the temperature range 200 to 300 K which is well understood in terms of the thermal population of the initial Sm³⁺ (${}^{4}G_{5/2}$) Γ_{7} donor and Eu³⁺ (${}^{7}F_{1}$) Γ_{4} acceptor states [2]. The energy gaps between the Γ_{8} and Γ_{7} levels of the ${}^{4}G_{5/2}$ state of Sm³⁺ as well as between the ${}^{7}F_{0}$ and ${}^{7}F_{1}$ states of Eu³⁺ are about 350 cm⁻¹, such that the near-resonant process involving these initial states contributes to the total energy-transfer rate at temperatures >100 K.

In this paper we calculate the near-resonant contribution to the energy-transfer rate between a Sm³⁺ donor ion and a Eu³⁺ acceptor at a distance R_1 =7.65 Å assuming magnetic dipole–magnetic dipole interaction among donor and acceptor ions. Within the theoretical uncertainty and the experimental error the order of magnitude of the calculated energy-transfer rate is in agreement with the near-resonant contribution to the experimental rate which is related to the exponential decay rate of luminescence from the ${}^4G_{5/2}$ state of Sm³⁺ in Cs₂NaSm_{0.01}Eu_{0.99}Cl₆ [1].

2. Theory

2.1. The shell model for energy transfer

Within our shell model assuming electric dipole (vib-

^{*}Corresponding author. Fax +43 316 873 8225; e-mail: luxbacher@ptc.tu-graz.ac.at

^{0925-8388/98/\$19.00 © 1998} Elsevier Science S.A. All rights reserved. PII: S0925-8388(98)00314-4

Fig. 1. Energy levels and transitions involved in the cross-relaxation and energy-transfer processes in $Cs_2NaSm_xEu_yGd_{1-x-y}Cl_6$. The letters indicate pairs of near-resonant transitions.

ronic)–electric dipole (vibronic) and/or magnetic dipole– magnetic dipole interaction among donor and acceptor ions the donor emission decay following a δ -function excitation

pulse takes the form [1]

$$I(t) = I(0)\exp(-k_0 t) \prod_{n=1}^{\text{shells}} \sum_{r_n=0}^{N_n} \sum_{q_n=0}^{N_n-r_n} O_{r_n,q_n}^{N_n}(x,y)$$
$$\exp\left[-\frac{2}{3}(r_n k^{\text{CR}} + q_n k^{\text{ET}}) \left(\frac{R_1}{R_n}\right)^6 t\right]$$
(1)

In the present system, k_0 is the intrinsic decay rate of an isolated Sm3+ ion including radiative and non-radiative relaxation processes, k^{CR} is the cross-relaxation rate from the donor ion to a chemically identical acceptor in the first shell, and k^{ET} is the rate of energy transfer to a n=1acceptor chemically different from the donor. The occupancy factor $O_{r_n,q_n}^{N_n}(x,y)$ is the probability of finding r_n acceptor ions chemically identical to the donor and q_n chemically different acceptors in the nth shell at a distance R_n which has a capacity to contain N_n acceptors [1]. Since the rates k_0 , k^{CR} , and k^{ET} are determined from exponential decay of the Sm³⁺ (⁴G_{5/2}) emission in $Cs_2NaSm_{0.001}Gd_{0.999}Cl_6$, Cs₂NaSmCl₆, and $Cs_2NaSm_{0.01}Eu_{0.99}Cl_6$, respectively, the donor decay curves for all other concentrations of donor and acceptor ions may be calculated by Eq. (1) without any adjustable parameters.

2.2. Resonant energy transfer

For energy transfer between rare-earth ions we consider transitions from the initially excited crystal-field component $|[\alpha'_D J'_D] \Gamma'_D \gamma'_D\rangle$ of multiplet $|[\alpha'_D J'_D] \Gamma'_D\rangle$ to the lower lying crystal-field component $\langle [\alpha_D J_D] \Gamma_D \gamma_D |$ of multiplet $\langle [\alpha_D J_D] \Gamma_D |$ of the donor ion with a similar notation for the acceptor. α represents any other quantum number necessary to specify the state. The total crystal-field splitting is typically a few cm⁻¹ and the population of the component levels is given by a Boltzmann distribution as

$$p_{d'} = g_{d'} \exp(-E_{d'}/k_{\rm B}T) \left[\sum_{d''} g_{d''} \exp(-E_{d''}/k_{\rm B}T)\right]^{-1}$$
(2)

where the energy $E_{d'}$ is related to the position of the lowest level of the multiplet taken as $E_{d''} = 0$, and $g_{d'}$ is the degeneracy of the *d*'th level. The resonant energy-transfer rate from a donor ion to an acceptor then becomes [3,4]

$$k^{\rm ET} = \frac{2\pi}{\hbar} \sum_{d',a} p_{d'} p_{a} |\langle da' | \hat{H}_{\rm DA} | d'a \rangle|^2 \int f_{d'd}(E) f_{aa'}(E) dE \qquad (3)$$

For magnetic dipole-magnetic dipole interaction the Hamiltonian in Eq. (3) takes the form

$$\hat{H}_{DA}^{MD} = \frac{\mu_0}{4\pi} \sum_{i,j} \left[\frac{\mu_{d'd}^i \mu_{aa'}^j}{R^3} - \frac{3(\mu_{d'd}^i R)(\mu_{aa'}^j R)}{R^5} \right]$$
(4)

where $\mu_{d'd}^{i}$ is the *i*th component of the magnetic-dipole

moment of the donor transition and i and j running over x, y, and z. Rewriting Eq. (4) the transition matrix element is given by

$$|\langle da' | \hat{H}_{\rm DA}^{\rm MD} | d'a \rangle|^2 = \left(\frac{\mu_0}{4\pi R^3}\right)^2 \sum_{i,j} (\mu_{d'd}^i)^2 (C_{ij})^2 (\mu_{aa'}^j)^2 \qquad (5)$$

In a face-centred cubic lattice, the components of the magnetic-dipole moment are independent of orientation such that $(\mu_{d'd}^i)^2 = \frac{1}{3}(\mu_{d'd})^2$, etc. Introducing a geometric factor which includes the angular dependence of the interacting magnetic dipoles as

$$G_{d'd;aa'}^{\rm MD} = \frac{1}{9} \sum_{i,j} (C_{ij})^2$$
(6)

Eq. (5) becomes

$$|\langle da' | \hat{H}_{\rm DA}^{\rm MD} | d'a \rangle|^2 = \left(\frac{\mu_0}{4\pi R^3}\right)^2 G_{d'd;aa'}^{\rm MD}(\mu_{d'd})^2(\mu_{aa'})^2 \qquad(7)$$

Writing the crystal-field states as

$$|f^{N}[\alpha SLJ]\Gamma\gamma\rangle = \sum_{M} c(JM|J\Gamma\gamma)|f^{N}[\alpha SL]JM\rangle$$
(8)

etc., the γ_0 th component of the magnetic-dipole transition moment transforming as the representation Γ_4 of the octahedral double group ²O is given by

$$\mu_{d'd}^{\Gamma_{4}\gamma_{0}} = \sum_{\gamma,\gamma'} \langle f^{N}[\alpha SLJ] \Gamma \gamma | \hat{m}_{\gamma_{0}}^{(1\Gamma_{4})} | f^{N}[\alpha' S'L'J'] \Gamma' \gamma' \rangle$$
(9)

where $\hat{m}^{(1\Gamma_4)} = \mu_{\rm B}(\hat{L} + 2\hat{S})$ is the magnetic moment tensor operator and $\mu_{\rm B}$ is the Bohr magneton. Application of the Wigner–Eckart theorem to the matrix element in Eq. (9) gives [5]

$$\langle f^{N}[\alpha SLJ]\Gamma\gamma | \hat{m}_{\gamma_{0}}^{(1\Gamma_{4})} | f^{N}[\alpha' S'L'J']\Gamma'\gamma' \rangle$$

$$= \begin{pmatrix} J\Gamma & 1\Gamma_{4} & J'\Gamma' \\ \gamma & \gamma_{0} & \gamma' \end{pmatrix} \langle f^{N}[\alpha SL]J | | \hat{m}^{(1)} | | f^{N}[\alpha' S'L']J' \rangle$$

$$(10)$$

within the $\{J, \Gamma\}$ scheme. The symmetry coupling coefficients

$$\begin{pmatrix} J\Gamma & 1\Gamma_4 & J'\Gamma' \\ \gamma & \gamma_0 & \gamma' \end{pmatrix} = \sum_{M,M',q} (-1)^{J'-M'} \begin{pmatrix} J' & 1 & J \\ -M' & q & M \end{pmatrix}$$

$$c(1q|1\Gamma_4\gamma_0)c(JM|J\Gamma\gamma)c(J'M'|J'\Gamma'\gamma')^*$$
(11)

are readily calculated for the various $J\Gamma \rightarrow J'\Gamma'$ electronic transitions involved in the energy-transfer process considered in this paper. The reduced matrix elements in Eq. (10) are calculated using Eqs. (10)–(13) of Ref. [6].

3. Results

3.1. Experimental decay curves

At 300 K the luminescence decay curves from the ${}^{4}G_{5/2}$ state of Sm³⁺ in both Cs₂NaSm_{0.01}Gd_{0.99}Cl₆ and

 $Cs_2NaSm_{0.01}Eu_{0.99}Cl_6$ show a fast non-exponential initial decay due to cross-relaxation to nearest-neighbour Sm³⁺ acceptor ions with a rate of $k^{CR} = 2120 \text{ s}^{-1}$. At times $> 2.5 \times 10^{-3}$ s both decay curves are essentially exponential with the lifetime of the ${}^4G_{5/2}$ state of Sm³⁺ decreasing by a factor of 6.6 for replacing Gd³⁺ by Eu³⁺. Both decay curves are exactly described by Eq. (1) and the stronger quenching of luminescence from the ${}^4G_{5/2}$ state in $Cs_2NaSm_{0.01}Eu_{0.99}Cl_6$ is assigned to additional energy transfer between Sm³⁺ donor ions and Eu³⁺ acceptors at a rate $k^{ET} = 49.9 \text{ s}^{-1}$.

3.2. Numerical calculation

In the following we calculate the near-resonant magnetic dipole–magnetic dipole contribution to the energy-transfer rate from a Sm^{3+} donor ion to a single Eu^{3+} acceptor ion in the first shell. The calculation of resonant energy-transfer rates using the Förster–Dexter equation for magnetic dipole–magnetic dipole interaction [3,4] involves the determination of crystal-field eigenstates for both donor and acceptor ions and the magnetic dipolar coupling strength associated with the transitions considered in the energy-transfer process. The energy mismatch between donor emission and acceptor absorption transitions is introduced in the overlap integral of normalized lineshape functions for these transitions.

The compositions of the free-ion energy levels of Sm³⁺ and Eu³⁺ involved in the $({}^{4}G_{5/2})\Gamma_{7} \rightarrow ({}^{6}H_{7/2})\Gamma_{8}$ donor transition and the $({}^{7}F_{1})\Gamma_{4} \rightarrow ({}^{5}D_{0})\Gamma_{1}$ acceptor transition shown in Fig. 1 as a pair of transitions BB' are taken from Refs. [7–9], respectively. The basis functions used in the calculation of magnetic-dipole transition moments are taken from Griffith [10]. We note that beside these resonant transitions a non-resonant pathway involving the ground states of both the initial donor and acceptor multiplets is present and indicated as a pair of transitions AA' in Fig. 1.

The magnetic dipolar coupling strength for the donor transition is given by

$$\langle ({}^{6}\mathbf{H}_{7/2})\Gamma_{8}|\hat{m}^{(1\Gamma_{4})}|({}^{4}\mathbf{G}_{5/2})\Gamma_{7}\rangle = \sum_{\substack{S,S'J,J'\\L,L'}} \sum_{L,L'} \langle [SL]J||\hat{m}^{(1)}||[S'L']J'\rangle \delta_{SS'}\delta_{LL'} \Delta (JJ'1) \sum_{\gamma,\gamma',\gamma_{0}} c(J\Gamma_{8}\gamma)c(1\Gamma_{4}\gamma_{0})c(J'\Gamma_{7}\gamma') \begin{pmatrix} J\Gamma_{8} & 1\Gamma_{4} & J'\Gamma_{7}\\ \gamma & \gamma_{0} & \gamma' \end{pmatrix}$$
(12)

The magnetic-dipole moments for the $({}^{4}G_{5/2})\Gamma_{7} \rightarrow ({}^{6}H_{7/2})\Gamma_{8}$ donor transition and the $({}^{7}F_{1})\Gamma_{4} \rightarrow ({}^{5}D_{0})\Gamma_{1}$ acceptor transition are $(1.830\pm0.497) \mu_{B}$ and $-(0.463\pm0.126) \mu_{B}$, respectively. Substitution of these values in Eq. (7) and utilizing the geometric factor for magnetic dipole-magnetic dipole interaction, $G_n^6 = \frac{2}{3}$ [11], the square of the interaction energy representing the coupling of the magnetic dipoles $\mu_{d'd}$ and $\mu_{aa'}$ is $E_{int}^2 = (1.963 \pm 1.066) \times 10^{-53} \text{ J}^2$. The resonant energy-transfer rate k^{ET} between the Sm³⁺ donor ion and a nearest-neighbour Eu³⁺ acceptor is related to this interaction energy by

$$k^{\rm ET}(\rm MD) = \frac{2\pi}{\hbar} p({}^{4}\rm G_{5/2}) \Gamma_{7} p({}^{7}\rm F_{1}) \Gamma_{4} E^{2}_{\rm int} \int f_{d'd}(E) f_{aa'}(E) dE$$
(13)

where the overlap integral is calculated using normalized Lorentzian line-shape functions for the donor emission and acceptor absorption transitions. The full width at half maximum, ΔE , is taken as 9.932×10^{-23} J for both donor and acceptor transitions, and the transition maxima are measured as $(3.352\pm0.001)\times10^{-19}$ J and $(3.349\pm0.002)\times10^{-19}$ J for donor and acceptor transitions, respectively, corresponding to (16872 ± 8) and (16858 ± 5) cm⁻¹. Considering these values and the integral of product Lorentzian functions which is evaluated as

$$\int f_{d'd}(E) f_{aa'}(E) dE = \frac{2}{\pi} \frac{\Delta E_{d'd} + \Delta E_{aa'}}{4(E_{d'd} - E_{aa'})^2 + (\Delta E_{d'd} + \Delta E_{aa'})^2}$$
(14)

the value of the overlap integral is $3.625 \times 10^{-20} \text{ J}^{-1}$. At 300 K the thermal population of the Sm³⁺ (⁴G_{5/2}) Γ_7 state and the Eu³⁺ (⁷F₁) Γ_4 level are about 8 and 32%, respectively. Substitution in Eq. (13) gives $k^{\text{ET}} = (12.0 \pm 6.5) \text{ s}^{-1}$ for the rate of near-resonant energy transfer between a Sm³⁺ donor ion and a single nearest-neighbour Eu³⁺ acceptor ion at 300 K.

4. Conclusions

We have calculated the near-resonant contribution, $k^{\text{ET}} = (12.0\pm6.5) \text{ s}^{-1}$, to the rate of energy transfer from a Sm³⁺ donor ion to a nearest-neighbour Eu³⁺ acceptor in the hexachloroelpasolite crystals Cs₂NaSm_xEu_yGd_{1-x-y}Cl₆ assuming magnetic dipole–magnetic dipole interaction among donor and acceptor ions. Comparison of this rate

with the total energy-transfer rate, $k^{\text{ET}} = 49.9 \text{ s}^{-1}$, determined experimentally from the luminescence decay curve of the ${}^{4}\text{G}_{5/2}$ state of Sm³⁺ in Cs₂NaSm_{0.01}Eu_{0.99}Cl₆ by using the shell model for energy transfer shows a discrepancy by a factor of 4. Beside the near-resonant magnetic dipole–magnetic dipole contribution the experimental rate consists of additional non-resonant electric dipole vibronic–electric dipole vibronic contributions which are not included in our calculation.

Within the uncertainty involved in the theoretical calculation the order of magnitude of the near-resonant contribution to the total energy-transfer rate is comparable with the experimental value estimated from its temperature dependence as (30 ± 5) s⁻¹. This agreement shows the applicability of the shell model to determine energy-transfer rates in crystalline solids of high symmetry.

Acknowledgements

One of us (TL) acknowledges partial financial support of this work by the Graz Technical University.

References

- [1] T. Luxbacher, H.P. Fritzer, C.D. Flint, J. Lumin. 71 (1997) 177.
- [2] T. Luxbacher, H.P. Fritzer, C.D. Flint, J. Lumin. 71 (1997) 313.
- [3] T. Förster, Ann. Phys. 2 (1948) 55.
- [4] D.L. Dexter, J. Chem. Phys. 21 (1953) 836.
- [5] E. König, S. Kremer, Int. J. Quant. Chem. 8 (1974) 347.
- [6] W.T. Carnall, P.R. Fields, B.G. Wybourne, J. Chem. Phys. 42 (1965) 3797.
- [7] B.G. Wybourne, J. Chem. Phys. 36 (1962) 2301.
- [8] The parameters to calculate the composition of the ${}^{4}G_{5/2}$ free-ion state of Sm³⁺ are taken from D.R. Foster, F.S. Richardson, R.W. Schwartz, J. Chem. Phys. 82 (1985) 618.
- [9] G.S. Ofelt, J. Chem. Phys. 38 (1963) 2171.
- [10] J.S. Griffith, The Theory of Transition Metal Ions, Cambridge University Press, Cambridge, MA, 1964.
- [11] S.O. Vasquez, C.D. Flint, Chem. Phys. Lett. 238 (1995) 378.